Chapter 3

Vectors

Concepts:

> Vectors

> Extending arrays
> Matrices

Climb high, climb far,
your goal the sky, your aim the star.
—Inscription on a college staircase

THE BEHAVIOR OF A PROGRAM usually depends on its input. Suppose, for ex-
ample, that we wish to write a program that reads in n String values. One
approach would keep track of the n values with n String variables:

public static void main(String args[])

{
// read in n = 4 strings
Scanner s = new Scanner(System.in);
String v1, v2, v3, v4;
vl = s.next(); // read a space-delimited word
v2 = s.next();
v3 = s.next();
v4 = s.next();
}

This approach is problematic for the programmer of a scalable application—an
application that works with large sets of data as well as small. As soon as n
changes from its current value of 4, it has to be rewritten. Scalable applications
are not uncommon, and so we contemplate how they might be supported.

One approach is to use arrays. An array of n values acts, essentially, as a
collection of similarly typed variables whose names can be computed at run
time. A program reading n values is shown here:

public static void main(String args[])
{
// read in n = 4 strings
Scanner s = new Scanner(System.in);
String datall;
int n = 4;
// allocate array of n String references:
data = new String[n];
for (int i = 0; i < n; i++)

StringReader

44

Vectors

datal[i] = s.next();

}

Here, n is a constant whose value is determined at compile time. As the program
starts up, a new array of n integers is constructed and referenced through the
variable named data.

All is fine, unless you want to read a different number of values. Then n
has to be changed, and the program must be recompiled and rerun. Another
solution is to pick an upper bound on the length of the array and only use the
portion of the array that is necessary. Here’s a modified procedure that uses up
to one million array elements:

public static void main(String args[])
{
// read in up to 1 million Strings
Scanner s = new Scanner(System.in);
String datall;
int n = 0;
data = new String[1000000];
// read in strings until we hit end of file
while (s.hasNext())
{
dataln] = s.next();
n++;

>

}

Unfortunately, if you are running your program on a small machine and have
small amounts of data, you are in trouble (see Problem . Because the array
is so large, it will not fit on your machine—even if you want to read small
amounts of data. You have to recompile the program with a smaller upper
bound and try again. All this seems rather silly, considering how simple the
problem appears to be.

We might, of course, require the user to specify the maximum size of the
array before the data are read, at run time. Once the size is specified, an appro-
priately sized array can be allocated. While this may appear easier to program,
the burden has shifted to the user of the program: the user has to commit to a
specific upper bound—beforehand:

public static void main(String args[])
{
// read in as many Strings as demanded by input
Scanner s = new Scanner(System.in);
String datall;
int n;
// read in the number of strings to be read
n = s.nextInt();

3.1 The Interface

45

// allocate references for n strings
data = new String[n];
// read in the n strings
for (int i = 0; i < n; i++)
{
datal[i] = s.next();

A nice solution is to build a vector—an array whose size may easily be
changed. Here is our String reading program retooled one last time, using
Vectors:

public static void main(String args[])

{
// read in an arbitrary number of strings
Scanner s = new Scanner(System.in);
Vector data;
// allocate vector for storage
data = new Vector();
// read strings, adding them to end of vector, until eof
while (s.hasNext())
{
String st = s.next();
data.add(st);
}
}

The Vector starts empty and expands (using the add method) with every String
read from the input. Notice that the program doesn’t explicitly keep track of the
number of values stored in data, but that the number may be determined by a
call to the size method.

3.1 The Interface

The semantics of a Vector are similar to the semantics of an array. Both can
store multiple values that may be accessed in any order. We call this property
random access. Unlike the array, however, the Vector starts empty and is ex-
tended to hold object references. In addition, values may be removed from the
Vector causing it to shrink. To accomplish these same size-changing operations
in an array, the array would have to be reallocated.

With these characteristics in mind, let us consider a portion of the “inter-
face’fl] for this structure:

L Stricktly speaking, constructors cannot be specified in formal Javainterfaces. Nonetheless,
adopt a convention of identifying constructors as part of the public view of structures (often called
the Application Program Interface or API).

Vector

46

Vectors

public class Vector extends AbstractList implements Cloneable

{

public Vector()
// post: constructs a vector with capacity for 10 elements

public Vector(int initialCapacity)
// pre: initialCapacity >= 0
// post: constructs an empty vector with initialCapacity capacity

public void add(Object obj)
// post: adds new element to end of possibly extended vector

public Object remove(Object element)
// post: element equal to parameter is removed and returned

public Object get(int index)
// pre: 0 <= index && index < size()
// post: returns the element stored in location index

public void add(int index, Object obj)

// pre: 0 <= index <= size()

// post: inserts new value in vector with desired index,
// moving elements from index to size()-1 to right

public boolean isEmpty ()
// post: returns true iff there are no elements in the vector

public Object remove(int where)
// pre: 0 <= where && where < size()
// post: indicated element is removed, size decreases by 1

public Object set(int index, Object obj)
// pre: 0 <= index && index < size()
// post: element value is changed to obj; old value is returned

public int size()
// post: returns the size of the vector

First, the constructors allow construction of a Vector with an optional initial
capacity. The capacity is the initial number of Vector locations that are reserved
for expansion. The Vector starts empty and may be freely expanded to its
capacity. At that point the Vector’s memory is reallocated to handle further
expansion. While the particulars of memory allocation and reallocation are
hidden from the user, there is obvious benefit to specifying an appropriate initial

capacity.

The one-parameter add method adds a value to the end of the Vector, ex-
panding it. To insert a new value in the middle of the Vector, we use the
two-parameter add method, which includes a location for insertion. To access

3.2 Example: The Word List Revisited

47

an existing element, one calls get. If remove is called with an Object, it re-
moves at most one element, selected by value. Another remove method shrinks
the logical size of the Vector by removing an element from an indicated loca-
tion. The set method is used to change a value in the Vector. Finally, two
methods provide feedback about the current logical size of the Vector: size
and isEmpty. The size method returns the number of values stored within
the Vector. As elements are added to the Vector, the size increases from zero
up to the capacity of the Vector. When the size is zero, then isEmpty returns
true. The result is a data structure that provides constant-time access to data
within the structure, without concern for determining explicit bounds on the
structure’s size.

There are several ways that a Vector is different than its array counterpart.
First, while both the array and Vector maintain a number of references to ob-
jects, the Vector typically grows with use and stores a non-null reference in
each entry. An array is a static structure whose entries may be initialized and
used in any order and are often null. Second, the Vector has an end where ele-
ments can be appended, while the array does not directly support the concept of
appending values. There are times, of course, when the append operation might
not be a feature desired in the structure; either the Vector or array would be a
suitable choice.

The interface for Vectors in the structure package was driven, almost ex-
clusively, by the interface for Java’s proprietary java.util.Vector class. Thus,
while we do not have access to the code for that class, any program written to
use Java’s Vector class can be made to use the Vector class described here;
their interfaces are consistent.

3.2 Example: The Word List Revisited

We now reconsider an implementation of the word list part of our Hangman
program of Section [I.6]implemented directly using Vectors:

Vector list;
String targetWord;
java.util.Random generator = new java.util.Random();
list = new Vector(10);
list.add("clarify");
list.add("entered");
list.add("clerk");
while (list.size() != 0)
{
{ // select a word from the list
int index = Math.abs(generator.nextInt())%list.size();
targetWord = (String)list.get (index);
}
// ... play the game using targetWord ...
list.remove (targetWord) ;

WordList

48

Vectors

WordFreq

Here, the operations of the Vector are seen to be very similar to the opera-
tions of the WordList program fragment shown on page The Vector class,
however, does not have a selectAny method. Instead, the bracketed code ac-
complishes that task. Since only Strings are placed within the Vector, the
assignment of targetWord involves a cast from Object (the type of value re-
turned from the get method of Vector) to String. This cast is necessary for
Java to be reassured that you're expecting an element of type String to be
returned. If the cast were not provided, Java would complain that the types
involved in the assignment were incompatible.

Now that we have an implementation of the Hangman code in terms of both
the WordList and Vector structures, we can deduce an implementation of the
WordList structure in terms of the Vector class. In this implementation, the
WordList contains a Vector that is used to hold the various words, as well
as the random number generator (the variable generator in the code shown
above). To demonstrate the implementation, we look at the implementation of
the WordList’s constructor and selectAny method:

protected Vector thelList;
protected java.util.Random generator;

public WordList(int n)

{
theList = new Vector(n);
generator = new java.util.Random();
}
public String selectAny()
{
int i = Math.abs(generator.nextInt())%theList.size();
return (String)thelist.get(i);
}

Clearly, the use of a Vector within the WordList is an improvement over the
direct use of an array, just as the use of WordList is an improvement over the
complications of directly using a Vector in the Hangman program.

3.3 Example: Word Frequency

Suppose one day you read a book, and within the first few pages you read
“behemoth” twice. A mighty unusual writing style! Word frequencies within
documents can yield interesting informationE] Here is a little application for
computing the frequency of words appearing on the input:

public static void main(String args[])

2 Recently, using informal “literary forensics,” Don Foster has identified the author of the anony-
mously penned book Primary Colors and is responsible for new attributions of poetry to Shake-
speare. Foster also identified Major Henry Livingston Jr. as the true author of “The Night Before
Christmas.”

3.3 Example: Word Frequency

49

{
Vector vocab = new Vector(1000);
Scanner s = new Scanner(System.in);
int i;
// for each word on input
while (s.hasNext())
{
Association wordInfo; // word-frequency association
String vocabWord; // word in the list
// read in and tally instance of a word
String word = s.next();
for (i = 0; i < vocab.size(); i++)
{
// get the association
wordInfo = (Association)vocab.get(i);
// get the word from the association
vocabWord = (String)wordInfo.getKey();
if (vocabWord.equals (word))
{ // match: increment integer in association
Integer f = (Integer)wordInfo.getValue();
wordInfo.setValue(new Integer(f.intValue() + 1));
break;
}
}
// mismatch: add new word, frequency 1.
if (i == vocab.size())
{
vocab.add(new Association(word,new Integer(1)));
}
}
// print out the accumulated word frequencies
for (i = 0; i < vocab.size(); i++)
{
Association wordInfo = (Association)vocab.get(i);
System.out.println(
wordInfo.getKey()+" occurs "+
wordInfo.getValue()+" times.");
}
}

First, for each word found on the input, we maintain an Association between
the word (a String) and its frequency (an Integer). Each element of the
Vector is such an Association. Now, the outer loop at the top reads in each
word. The inner loop scans through the Vector searching for matching words
that might have been read in. Matching words have their values updated. New
words cause the construction of a new Association. The second loop scans
through the Vector, printing out each of the Associations.

50

Vectors

Vector

Each of these applications demonstrates the most common use of Vectors—
keeping track of data when the number of entries is not known far in advance.
When considering the List data structure we will consider the efficiency of
these algorithms and, if necessary, seek improvements.

3.4 The Implementation

Clearly, the Vector must be able to store a large number of similar items. We
choose, then, to have the implementation of the Vector maintain an array of
Objects, along with an integer that describes its current size or extent. When
the size is about to exceed the capacity (the length of the underlying array), the
Vector’s capacity is increased to hold the growing number of elements.

The constructor is responsible for allocation of the space and initializing the
local variables. The number of elements initially allocated for expansion can be
specified by the user:

protected Object elementDatall; // the data
protected int elementCount; // number of elements in vector

public Vector()
// post: constructs a vector with capacity for 10 elements
{

this(10); // call one-parameter constructor

public Vector(int initialCapacity)
// pre: initialCapacity >= 0
// post: constructs an empty vector with initialCapacity capacity

{

Assert.pre(initialCapacity >= 0, "Initial capacity should not be negative.");

elementData = new Object[initialCapacityl];
elementCount = 0;

}

Unlike other languages, all arrays within Java must be explicitly allocated. At
the time the array is allocated, the number of elements is specified. Thus, in the
constructor, the new operator allocates the number of elements desired by the
user. Since the size of an array can be gleaned from the array itself (by asking
for elementData.length), the value does not need to be explicitly stored within
the Vector objectEI

To access and modify elements within a Vector, we use the following oper-
ations:

public Object get(int index)
3 It could, of course, but explicitly storing it within the structure would mean that the implementor

would have to ensure that the stored value was always consistent with the value accessible through
the array’s length variable.

3.4 The Implementation

51

// pre: 0 <= index && index < size()
// post: returns the element stored in location index

{

return elementDatal[index];

public Object set(int index, Object obj)
// pre: O <= index && index < size()
// post: element value is changed to obj; old value is returned

{
Object previous = elementDatal[index];
elementDatal[index] = obj;
return previous;

}

The arguments to both methods identify the location of the desired element. Be-
cause the index should be within the range of available values, the precondition
states this fact.

For the accessor (get), the desired element is returned as the result. The set
method allows the Object reference to be changed to a new value and returns
the old value. These operations, effectively, translate operations on Vectors
into operations on arrays.

Now consider the addition of an element to the Vector. One way this can
be accomplished is through the use of the one-parameter add method. The task
requires extending the size of the Vector and then storing the element at the
location indexed by the current number of elements (this is the first free location
within the Vector). Here is the Java method:

public void add(Object obj)
// post: adds new element to end of possibly extended vector

{
ensureCapacity(elementCount+1) ;
elementDatalelementCount] = obj;
elementCount++;

}

(We will discuss the method ensureCapacity later. Its purpose is simply to en-
sure that the data array actually has enough room to hold the indicated number
of values.) Notice that, as with many modern languages, arrays are indexed
starting at zero. There are many good reasons for doing this. There are prob-
ably just as many good reasons for not doing this, but the best defense is that
this is what programmers are currently used to.

Principle 6 Maintaining a consistent interface makes a structure useful.

If one is interested in inserting an element in the middle of the Vector, it is
necessary to use the two-parameter add method. The operation first creates an
unused location at the desired point by shifting elements out of the way. Once
the opening is created, the new element is inserted.

592 Vectors

~
lo[1]2]s[a[s[e]7[8[o] [o]1][2]a]a]s[6]7]s]o]
) /\
olof2]sfals]e[7]8[o] [of1]2]3[4a[s]6[7]s]8]
/2 /2

[ofololsfa[s[e|7[8[o] [o]1][2]a]a]s[e][7]7]8]
: ~ ~ :

[ofofolofofofofofofs] [o]1][1]2]3][4[s]6c]7]s]
@ (b)

Figure 3.1 The incorrect (a) and correct (b) way of moving values in an array to make
room for an inserted value.

public void add(int index, Object obj)

// pre: O <= index <= size()

// post: inserts new value in vector with desired index,
// moving elements from index to size()-1 to right

{
int i;
ensureCapacity(elementCount+1) ;
// must copy from right to left to avoid destroying data
for (i = elementCount; i > index; i--) {
elementDatal[i] = elementDatali-1];
}
// assertion: i == index and element[index] is available
elementData[index] = obj;
elementCount++;
}

Note that the loop that moves the elements higher in the array runs backward.
To see why, it is only necessary to see what happens if the loop runs forward (see
Figure [3.1p): the lowest element gets copied into higher and higher elements,
ultimately copying over the entire Vector to the right of the insertion point.
Figure demonstrates the correct technique.

Removing an element from a specific location in the Vector is very similar,
reversing the effect of add. Here, using an argument similar to the previous one,
the loop moves in the forward direction:

public Object remove(int where)
// pre: 0 <= where && where < size()
// post: indicated element is removed, size decreases by 1

{

3.5 Extensibility: A Feature

53

Object result = get(where);

elementCount--;

while (where < elementCount) {
elementData[where] = elementDatal[where+1];
where++;

}
elementDatal[elementCount] = null; // free reference
return result;

}

We also allow the removal of a specific value from the Vector, by passing an
example Object to remove (not shown). Within this code, the equals method
of the value passed to the routine is used to compare it to values within the
Vector. When (and if) a match is found, it is removed using the technique just
described.

The methods having to do with size are relatively straightforward:

public boolean isEmpty ()
// post: returns true iff there are no elements in the vector
{

return size() == 0;

public int size()
// post: returns the size of the vector
{

return elementCount;

}

The logical size of the Vector is the number of elements stored within the
Vector, and it is empty when this size is zero.

3.5 Extensibility: A Feature

Sometimes, our initial estimate of the maximum number of values is too small.
In this case, it is necessary to extend the capacity of the Vector, carefully main-
taining the values already stored within the Vector. Fortunately, because we
have packaged the implementation within an interface, it is only necessary to
extend the functionality of the existing operations and provide some additional
methods to describe the features.

A first approach might be to extend the Vector to include just as many
elements as needed. Every time an element is added to the Vector, the number
of elements is compared to the capacity of the array. If the capacity is used up,
an array that is one element longer is allocated. This reallocation also requires
copying of the existing data from one array to the other. Of course, for really
long arrays, these copying operations would take a proportionally long time.
Over time, as the array grows to n elements, the array data get copied many
times. At the beginning, the array holds a single element, but it is expanded to

54

Vectors

hold two. The original element must be copied to the new space to complete
the operation. When a third is added, the first two must be copied. The result
is that
n(n —1)

2

elements are copied as the array grows to size n. (Proving this last formula is
the core of Problem [3.8]) This is expensive since, if in the beginning we had
just allocated the Vector with a capacity of n elements, none of the data items
would have to be copied during extension!

It turns out there is a happy medium: every time you extend the array, just
double its capacity. Now, if we reconsider the number of times that an item
gets copied during the extension process, the result is dramatically different.
Suppose, for neatness only, that n is a power of 2, and that the Vector started
with a capacity of 1. What do we know? When the Vector was extended from
capacity 1 to capacity 2, one element was copied. When the array was extended
from capacity 2 to capacity 4, two elements were copied. When the array was
extended from capacity 4 to capacity 8, four elements were copied. This contin-
ues until the last extension, when the Vector had its capacity extended from 3
to n: then 5 elements had to be preserved. The total number of times elements
were copied is

1+2+3+-+(n-1)=

1+2+4+~-~+g=n—1
Thus, extension by doubling allows unlimited growth of the Vector with an
overhead that is proportional to the ultimate length of the array. Another way
to think about it is that there is a constant overhead in supporting each element
of a Vector extended in this way.

The Java language specifies a Vector interface that allows the user to specify
how the Vector is to be extended if its capacity is not sufficient for the current
operation. When the Vector is constructed, a capacityIncrement is specified.
This is simply the number of elements to be added to the underlying array
when extension is required. A nonzero value for this increment leads to the n?
behavior we saw before, but it may be useful if, for example, one does not have
the luxury of being able to double the size of a large array. If the increment is
zero, the doubling strategy is used.

Our design, then, demands another protected value to hold the increment;
we call this capacityIncrement. This value is specified in a special constructor
and is not changed during the life of the Vector:

protected int capacityIncrement; // the rate of growth for vector

public Vector(int initialCapacity, int capacityIncr)
// pre: initialCapacity >= 0, capacityIncr >= 0
// post: constructs an empty vector with initialCapacity capacity
// that extends capacity by capacityIncr, or doubles if 0O
{
Assert.pre(initialCapacity >= 0 && capacityIncr >= 0,
"Neither capacity nor increment should be negative.");

3.5 Extensibility: A Feature 55

elementData = new Object[initialCapacityl];
elementCount = 0;
capacityIncrement = capacityIncr;

We are now prepared to investigate ensureCapacity, a method that, if nec-
essary, resizes Vector to have a capacity of at least minCapacity:

public void ensureCapacity(int minCapacity)
// post: the capacity of this vector is at least minCapacity

{
if (elementData.length < minCapacity) {
int newLength = elementData.length; // initial guess
if (capacityIncrement == 0) {
// increment of O suggests doubling (default)
if (newLength == 0) newLength = 1;
while (newLength < minCapacity) {
newLength *= 2;
}
} else {
// increment != 0 suggests incremental increase
while (newLength < minCapacity)
{
newLength += capacityIncrement;
}
}
// assertion: newlLength > elementData.length.
Object newElementData[]l = new Object[newLength];
int i;
// copy old data to array
for (i = 0; i < elementCount; i++) {
newElementData[i] = elementDatali];
}
elementData = newElementData;
// garbage collector will (eventually) pick up old elementData
}
// assertion: capacity is at least minCapacity
}

This code deserves careful investigation. If the current length of the underlying
array is already sufficient to provide minCapacity elements, then the method
does nothing. On the other hand, if the Vector is too short, it must be ex-
tended. We use a loop here that determines the new capacity by doubling (if
capacityIncrement is zero) or by directly incrementing if capacityIncrement
is nonzero. In either case, by the time the loop is finished, the desired capacity
is determined. At that point, an array of the appropriate size is allocated, the
old values are copied over, and the old array is dereferenced in favor of the new.

56

Vectors

LSystem

3.6 Example: L-Systems

In the late 1960s biologists began to develop computational models for growth.
One of the most successful models, L-systems, was developed by Aristid Lin-
denmayer. An L-system consists of a seed or start string of symbols derived
from an alphabet, along with a number of rules for changing or rewriting the
symbols, called productions. To simulate an interval of growth, strings are com-
pletely rewritten using the productions. When the rewriting begins with the
start string, it is possible to iteratively simulate the growth of a simple organ-
ism. To demonstrate the complexity of this approach, we can use an alphabet
of two characters—S (for stem) and L (for leaf). If the two productions

| Before | After |

S L
L SL

are used, we can generate the following strings over 6 time steps:

| Time | String \
0 S
1 L
2 SL
3 LSL
4 SLLSL
5 LSLSLLSL
6 SLLSLLSLSLLSL

Although there are some observations that might be made (there are never two
consecutive Ss), any notion of a pattern in this string quickly breaks down. Still,
many organisms display patterns that are motivated by the seemingly simple
production system.

We can use Vectors to help us perform this rewriting process. By construct-
ing two Character objects, L and S, we can store patterns in a Vector of refer-
ences. The rewriting process involves constructing a new result Vector. Here is
a program that would verify the growth pattern suggested in the table:

public class LSystem

{ // constants that define the alphabet
final static Character L = new Character(’L’);
final static Character S = new Character(’S’);

public static Vector rewrite(Vector s)
// pre: s is a string of L and S values
// post: returns a string rewritten by productions
{
Vector result = new Vector();
for (int pos = 0; pos < s.size(); post++)

{

3.7 Example: Vector-Based Sets

57

// rewrite according to two different rules
if (S == s.get(pos)) {
result.add (L) ;
} else if (L == s.get(pos)) {
result.add(S); result.add(L);
}
}

return result;

public static void main(String[] args)
{

Vector string = new Vector();
string.add(S);

// determine the number of strings
Scanner s = new Scanner(System.in);
int count = s.nextInt();

// write out the start string
System.out.println(string);
for (int i = 1; i <= count; i++)
{
string = rewrite(string); // rewrite the string
System.out.println(string); // print it out

}

L-systems are an interesting example of a grammar system. The power of a
grammar to generate complex structures—including languages and, biologi-
cally, plants—is of great interest to theoretical computer scientists.

3.7 Example: Vector-Based Sets

In Section [1.8] we discussed Java’s interface for a Set. Mathematically, it is an
unordered collection of unique values. The set abstraction is an important fea-
ture of many algorithms that appear in computer science, and so it is important
that we actually consider a simple implementation before we go much further.

As we recall, the Set is an extension of the Structure interface. It demands
that the programmer implement not only the basic Structure methods (add,
contains, remove, etc.), but also the following methods of a Set. Here is the
interface associated with a Vector-based implementation of a Set:

public class SetVector extends AbstractSet
{

public SetVector()

// post: constructs a new, empty set

SetVector

Vectors

public SetVector(Structure other)
// post: constructs a new set with elements from other

public void clear()
// post: elements of set are removed

public boolean isEmpty()
// post: returns true iff set is empty

public void add(Object e)
// pre: e is non-null object
// post: adds element e to set

public Object remove(Object e)
// pre: e is non-null object
// post: e is removed from set, value returned

public boolean contains(Object e)
// pre: e is non-null
// post: returns true iff e is in set

public boolean containsAll(Structure other)
// pre: other is non-null reference to set
// post: returns true iff this set is subset of other

public Object clone()
// post: returns a copy of set

public void addAll(Structure other)
// pre: other is a non-null structure
// post: add all elements of other to set, if needed

public void retainAll(Structure other)
// pre: other is non-null reference to set
// post: returns set containing intersection of this and other

public void removeAll(Structure other)
// pre: other is non-null reference to set

// post: returns set containing difference of this and other

public Iterator iterator()
// post: returns traversal to traverse the elements of set

public int size()
// post: returns number of elements in set

A SetVector might take the approach begun by the WordList implementation

3.7 Example: Vector-Based Sets

59

we have seen in Section each element of the Set would be stored in a
location in the Vector. Whenever a new value is to be added to the Set, it
is only added if the Set does not already contain the value. When values are
removed from the Set, the structure contracts. At all times, we are free to keep
the order of the data in the Vector hidden from the user since the ordering of
the values is not part of the abstraction.

We construct a SetVector using the following constructors, which initialize
a protected Vector:

protected Vector data; // the underlying vector

public SetVector()
// post: constructs a new, empty set

{

data = new Vector();

public SetVector(Structure other)
// post: constructs a new set with elements from other
{

this();

addAll (other) ;

The second constructor is a copy constructor that makes use of the union op-
erator, addA1l. Since the initial set is empty (the call to this() calls the first
constructor), the SetVector essentially picks up all the values found in the other
structure.

Most methods of the Set are adopted from the underlying Vector class. For
example, the remove method simply calls the remove method of the Vector:

public Object remove(Object e)
// pre: e is non-null object
// post: e is removed from set, value returned

{

return data.remove(e);

The add method, though, is responsible for ensuring that duplicate values are
not added to the Set. It must first check to see if the value is already a member:

public void add(Object e)
// pre: e is non-null object
// post: adds element e to set
{
if (!data.contains(e)) data.add(e);

60

Vectors

Matrix

To perform the more complex Set-specific operations (addA1l and others), we
must perform the specified operation for all the values of the other set. To ac-
complish this, we make use of an Iterator, a mechanism we will not study
until Chapter [8) but which is nonetheless simple to understand. Here, for ex-
ample, is the implementation of addA11, which attempts to add all the values
found in the other structure:

public void addAll(Structure other)
// pre: other is a non-null structure
// post: add all elements of other to set, if needed
{

Iterator yourElements = other.iterator();

while (yourElements.hasNext())

{

add(yourElements.next ()) ;

}

Other methods are defined in a straightforward manner.

3.8 Example: The Matrix Class

One application of the Vector class is to support a two-dimensional Vector-like
object: the matrix. Matrices are used in applications where two dimensions of
data are needed. Our Matrix class has the following methods:

public class Matrix
{
public Matrix(int h, int w)
// pre: h >= 0, w >= 0;
// post: constructs an h row by w column matrix

public Object get(int row, int col)
// pre: 0 <= row < height(), 0 <= col < width()
// post: returns object at (row, col)

public void set(int row, int col, Object value)
// pre: 0 <= row < height(), 0 <= col < width()
// post: changes location (row, col) to value

public void addRow(int r)
// pre: 0 <= r < height()
// post: inserts row of null values to be row r

public void addCol(int c)
// pre: 0 <= ¢ < width()
// post: inserts column of null values to be column c

3.8 Example: The Matrix Class

61

Rows 0 1 2 3

;ﬂ 09 [0y [02 | 03 |
;ﬂ @) [@y | @2 | @y |
2;4 20 | @) | 2 | @3 |

0

— 0 | 6y | 62| 63]
T @0 | @y | @42 | 63]

Figure 3.2 The Matrix class is represented as a Vector of rows, each of which is a
Vector of references to Objects. Elements are labeled with their indices.

public Vector removeRow(int r)
// pre: 0 <= r < height()
// post: removes row r and returns it as a Vector

public Vector removeCol(int c)
// pre: 0 <= ¢ < width()
// post: removes column c and returns it as a vector

public int width()
// post: returns number of columns in matrix

public int height ()
// post: returns number of rows in matrix

}

The two-parameter constructor specifies the width and height of the Matrix. El-
ements of the Matrix are initially null, but may be reset with the set method.
This method, along with the get method, accepts two parameters that identify
the row and the column of the value. To expand and shrink the Matrix, it is
possible to insert and remove both rows and columns at any location. When a
row or column is removed, a Vector of removed values is returned. The meth-
ods height and width return the number of rows and columns found within
the Matrix, respectively.

To support this interface, we imagine that a Matrix is a Vector of rows,
which are, themselves, Vectors of values (see Figure[3.2)). While it is not strictly
necessary, we explicitly keep track of the height and width of the Matrix (if we
determine at some later date that keeping this information is unnecessary, the
interface would hide the removal of these fields). Here, then, is the constructor
for the Matrix class:

protected int height, width; // size of matrix

62

Vectors

protected Vector rows; // vector of row vectors

public Matrix(int h, int w)

// pre: h >= 0, w >= 0;

// post: constructs an h row by w column matrix
{

height = h; // initialize height and width

width = w;

// allocate a vector of rows

rows = new Vector(height);

for (int r = 0; r < height; r++)

{ // each row is allocated and filled with nulls
Vector theRow = new Vector(width);
rows.add (theRow) ;
for (int ¢ = 0; ¢ < width; c++)

{
theRow.add (null);

}

We allocate a Vector for holding the desired number of rows, and then, for each
row, we construct a new Vector of the appropriate width. All the elements are
initialized to null. It’s not strictly necessary to do this initialization, but it’s a
good habit to get into.

The process of manipulating individual elements of the matrix is demon-
strated by the get and set methods:

public Object get(int row, int col)
// pre: 0 <= row < height(), 0 <= col < width()
// post: returns object at (row, col)

{
Assert.pre(0 <= row &% row < height, "Row in bounds.");
Assert.pre(0 <= col &% col < width, "Col in bounds.");
Vector theRow = (Vector)rows.get(row);
return theRow.get(col);

}

public void set(int row, int col, Object value)
// pre: 0 <= row < height(), 0 <= col < width()
// post: changes location (row, col) to value

{
Assert.pre(0 <= row && row < height, "Row in bounds.");
Assert.pre(0 <= col && col < width, "Col in bounds.");
Vector theRow = (Vector)rows.get(row);
theRow.set (col,value) ;

}

The process of manipulating an element requires looking up a row within the
rows table and finding the element within the row. It is also important to notice

3.8 Example: The Matrix Class

63

Rows 0 1 2 3

ol ++ ©09 | 01| 02| 03]
1 =0 || ey wy |
2| 0 | 2y | @2 | @3 |
3 L [T |
sl 1+ 6o ey 6|6y]
s| = @0 | 41 | @2 | 13 |

Figure 3.3 The insertion of a new row (gray) into an existing matrix. Indices are those
associated with matrix before addRow. Compare with Figure

that in the set method, the row is found using the get method, while the
element within the row is changed using the set method. Although the element
within the row changes, the row itself is represented by the same vector.

Many of the same memory management issues discussed in reference to
Vectors hold as well for the Matrix class. When a row or column needs to be
expanded to make room for new elements (see Figure [3.3)), it is vital that the
management of the arrays within the Vector class be hidden. Still, with the
addition of a row into the Matrix, it is necessary to allocate the new row object
and to initialize each of the elements of the row to null:

public void addRow(int r)
// pre: 0 <= r < height()
// post: inserts row of null values to be row r
{
Assert.pre(0 <= r & r < width, "Row in bounds.");
height++;
Vector theRow = new Vector(width);
for (int ¢ = 0; c < width; c++)
{
theRow.add (null);
}
rows.add (r,theRow) ;

We leave it to the reader to investigate the implementation of other Matrix
methods. In addition, a number of problems consider common extensions to
the Matrix class.

64

Vectors

3.9 Conclusions

Most applications that accept data are made more versatile by not imposing
constraints on the number of values processed by the application. Because the
size of an array is fixed at the time it is allocated, programmers find it difficult
to create size-independent code without the use of extensible data structures.
The Vector and Matrix classes are examples of extensible structures.

Initially Vectors are empty, but can be easily expanded when necessary.
When a programmer knows the upper bound on the Vector size, this infor-
mation can be used to minimize the amount of copying necessary during the
entire expansion process. When a bound is not known, we saw that doubling
the allocated storage at expansion time can reduce the overall copying cost.

The implementation of Vector and Matrix classes is not trivial. Data ab-
straction hides many important housekeeping details. Fortunately, while these
details are complex for the implementor, they can considerably reduce the com-
plexity of applications that make use of the Vector and Matrix structures.

Self Check Problems

Solutions to these problems begin on page [442
3.1 How are arrays and Vectors the same? How do they differ?

3.2 What is the difference between the add(v) and add(i,v) methods of
Vector?

3.3 What is the difference between the add (i, v) method and the set (i,v)
method?

3.4 What is the difference between the remove(v) method (v is an Object
value), and the remove (i) (i is an int)?

3.5 What is the distinction between the capacity and size of a Vector?

3.6 Why is the use of a Vector an improvement over the use of an array in
the implementation of Hangman in Section

3.7 When inserting a value into a Vector why is it necessary to shift ele-
ments to the right starting at the high end of the Vector? (See Figure[3.1])

3.8 By default, when the size first exceeds the capacity, the capacity of the
Vector is doubled. Why?

3.9 What is the purpose of the following code?
elementData = new Object[initialCapacity];

What can be said about the values found in elementData after this code is
executed?

3.10 When there is more than one constructor for a class, when and how do
we indicate the appropriate method to use? Compare, for example,

3.9 Conclusions

65

Vector v = new Vector();
Vector w = new Vector(1000);

3.11 Is the row index of the Matrix bounded by the matrix height or width?
When indexing a Matrix which is provided first, the row or the column?

Problems

Solutions to the odd-numbered problems begin on page

3.1 Explain the difference between the size and capacity of a vector. Which
is more important to the user?

3.2 The default capacity of a Vector in a structure package implementa-
tion is 10. It could have been one million. How would you determine a suitable
value?

3.3 The implementation of java.util.Vector provides a method trimTo-
Size. This method ensures that the capacity of the Vector is the same as its
size. Why is this useful? Is it possible to trim the capacity of a Vector without
using this method?

3.4 The implementation of java.util.Vector provides a method setSize.
This method explicitly sets the size of the Vector. Why is this useful? Is it
possible to set the size of the Vector without using this method?

3.5 Write a Vector method, index0f, that returns the index of an object in
the Vector. What should the method return if no object that is equals to this
object can be found? What does java.lang.Vector do in this case? How long
does this operation take to perform, on average?

3.6 Write a class called BitVector that has an interface similar to Vector,
but the values stored within the BitVector are all known to be boolean (the
primitive type). What is the primary advantage of having a special-purpose
vector, like BitVector?

3.7 Suppose we desire to implement a method reverse for the Vector class.
One approach would be to remove location 0 and to use add near the end or tail
of the Vector. Defend or reject this suggested implementation. In either case,
write the best method you can.

3.8 Suppose that a precisely sized array is used to hold data, and that each
time the array size is to be increased, it is increased by exactly one and the data
are copied over. Prove that, in the process of growing an array incrementally
from size 0 to size n, approximately n? values must be copied.

3.9 What is the maximum length array of Strings you can allocate on your
machine? (You needn’t initialize the array.) What is the maximum length array
of boolean you can allocate on your machine? What is to be learned from the
ratio of these two values?

3.10 Implement the Object-based remove method for the Vector class.

66

Vectors

3.11 In our discussion of L-systems, the resulting strings are always linear.
Plants, however, often branch. Modify the LSystem program so that it includes
the following five productions:

| Before [After || Before [After || Before | After |

S T U \Y W [S1U
T U v W

where [S] is represented by a new Vector that contains a single S. (To test to
see if an Object, x, is a Vector, use the test x instanceof Vector.)

3.12 Finish the two-dimensional Vector-like structure Matrix. Each element
of the Matrix is indexed by two integers that identify the row and column
containing the value. Your class should support a constructor, methods addRow
and addCol that append a row or column, the get and set methods, and width
and height methods. In addition, you should be able to use the removeRow and
removeCol methods.

3.13 Write Matrix methods for add and multiply. These methods should
implement the standard matrix operations from linear algebra. What are the
preconditions that are necessary for these methods?

3.14 A Matrix is useful for nonmathematical applications. Suppose, for ex-
ample, that the owners of cars parked in a rectangular parking lot are stored
in a Matrix. How would you design a new Matrix method to return the lo-
cation of a particular value in the Matrix? (Such an extension implements an
associative memory. We will discuss associative structures when we consider
Dictionarys.)

3.15 An m x n Matrix could be implemented using a single Vector with
mn locations. Assuming that this choice was made, implement the get method.
What are the advantages and disadvantages of this implementation over the
Vector of Vectors approach?

3.16 A triangular matrix is a two-dimensional structure with n rows. Row i
has i+ 1 columns (numbered 0 through 4) in row . Design a class that supports
all the Matrix operations, except addRow, removeRow, addCol, and removeCol.
You should also note that when a row and column must be specified, the row
must be greater than or equal to the column.

3.17 A symmetric matrix is a two-dimensional Matrix-like structure such that
the element at [i][j] is the same element found at [j][¢{]. How would you imple-
ment each of the Matrix operations? The triangular matrix of Problem
may be useful here. Symmetric matrices are useful in implementing undirected
graph structures.

3.18 Sometimes it is useful to keep an unordered list of characters (with
ASCII codes 0 through 127), with no duplicates. Java, for example, has a
CharSet class in the java.util package. Implement a class, CharSet, using
a Vector. Your class should support (1) the creation of an empty set, (2) the
addition of a single character to the set, (3) the check for a character in the set,
(4) the union of two sets, and (5) a test for set equality.

3.10 Laboratory: The Silver Dollar Game

Objective. To implement a simple game using Vectors or arrays.

Discussion. The Silver Dollar Game is played between two players. An arbitrar-
ily long strip of paper is marked off into squares:

The game begins by placing silver dollars in a few of the squares. Each square
holds at most one coin. Interesting games begin with some pairs of coins sepa-
rated by one or more empty squares.

Ol 100 O /

The goal is to move all the n coins to the leftmost n squares of the paper.
This is accomplished by players alternately moving a single coin, constrained by
the following rules:

1. Coins move only to the left.
2. No coin may pass another.
3. No square may hold more than one coin.

The last person to move is the winner.

Procedure. Write a program to facilitate playing the Silver Dollar Game. When
the game starts, the computer has set up a random strip with 3 or more coins.
Two players are then alternately presented with the current game state and are
allowed to enter moves. If the coins are labeled 0 through n—1 from left to right,
a move could be specified by a coin number and the number of squares to move
the coin to the left. If the move is illegal, the player is repeatedly prompted to
enter a revised move. Between turns the computer checks the board state to
determine if the game has been won.
Here is one way to approach the problem:

1. Decide on an internal representation of the strip of coins. Does your rep-
resentation store all the information necessary to play the game? Does
your representation store more information than is necessary? Is it easy to
test for a legal move? Is it easy to test for a win?

2. Develop a new class, CoinStrip, that keeps track of the state of the play-
ing strip. There should be a constructor, which generates a random board.
Another method, toString, returns a string representation of the coin
strip. What other operations seem to be necessary? How are moves per-
formed? How are rules enforced? How is a win detected?

68

Vectors

Hint: When
flipped, the
Belgian Euro is
heads

149 times

out of 250.

3.

Implement an application whose main method controls the play of a single
game.

Thought Questions. Consider the following questions as you complete the lab:

1.

How might one pick game sizes so that, say, one has a 50 percent chance
of a game with three coins, a 25 percent chance of a game with four coins,
a 121 percent chance of a game with five coins, and so on? Would your
technique bias your choice of underlying data structure?

How might one generate games that are not immediate wins? Suppose
you wanted to be guaranteed a game with the possibility of n moves?

. Suppose the computer could occasionally provide good hints. What op-

portunities appear easy to recognize?

How might you write a method, computerPlay, where the computer plays
to win?

A similar game, called Welter’s Game (after C. P. Welter, who analyzed the
game), allows the coins to pass each other. Would this modification of the
rules change your implementation significantly?

Notes:

